Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48.197
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612781

RESUMO

Poplars provide medicinal raw plant materials used in pharmacy. Leaf buds are one of the herbal medicinal products collected from poplars, having anti-inflammatory and antiseptic properties, but there are no quality standards for their production and there is a need to determine their botanical sources. Therefore, the chemical compositions of the leaf buds from four species and varieties of poplars, Populus balsamifera, P. × berolinensis, P. × canadensis 'Marilandica', and P. wilsonii were investigated and compared using gas chromatography coupled with mass detection (GC-MS) and two-dimensional high-performance thin-layer chromatography (2D-HPTLC) in order to search for taxa characterized by a high content of biologically active compounds and with a diverse chemical composition that determines their therapeutic effects. The presence of 163 compounds belonging to the groups of flavonoids, phenolic acids derivatives, glycerides, and sesquiterpenes was revealed. Moreover, the conditions for the separation and identification of biologically active compounds occurring in analyzed leaf buds using 2D-HPTLC were optimized and used for metabolomic profiling of the studied poplars, enabling their fast and simple botanical identification. The total phenolic (TPC) and flavonoid (TFC) contents of examined extracts were determined and their antioxidant capacities were estimated by spectrophotometric DPPH, ABTS, and FRAP assays. Based on the analysis of phytochemicals and antioxidant activity, P. × berolinensis buds were selected as the raw plant material for medicinal purposes with the highest content of active compounds and the strongest antioxidant activity.


Assuntos
Antioxidantes , Populus , Cromatografia em Camada Delgada , Cromatografia Gasosa , Flavonoides , Folhas de Planta
2.
Environ Geochem Health ; 46(5): 161, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592512

RESUMO

Hexavalent chromium (Cr (VI)) is an environmental contaminant brining high concerns due to its higher toxicity and mobility in comparison with trivalent chromium Cr(III). Cr (VI) has been linked with several adverse health effects, including respiratory diseases, lung cancer, and skin irritation. The primary sources of it in the environment are industrial activities.Most of the time, fly ash made of lignite can release Cr(VI) when it comes into contact with water in an aquatic environment. The objective of this study is the investigation of Cr (VI) concentration in leachates of fly ash and marl mixtures and the determination of its solubility under different pH conditions. Samples of fly ash were collected from the Power Plant of Agios Dimitrios. Additionally, samples of marl were collected from the mine of South Field, and both samples were mixed and prepared in in different proportions (% w.t.). The leaching experiments were carried out according to the EN-12457/1-4 (2003) standard under different pH conditions and chemical analysis of the leachates were performed by spectrophotometry with diphenylcarbazide (DPC). The environmental footprint of Cr (VI) in the study area was significant, especially in mixtures containing higher concentrations of fly ash. A critical pH range between 6 to 12 is observed. At acidic pH values, a high release of Cr (VI) was observed, while at the mentioned critical values (pH 10-12), a gradual decrease in its leachability was noticed. The high concentrations of Cr (VI) in the industrial area studied require immediate actions in terms of managing and limiting the potential hazardous impacts on the environment and by extension on the public health by developing appropriate prevention strategies.


Assuntos
Cromo , Cinza de Carvão , Humanos , Grécia , Cromo/toxicidade , Cromatografia Gasosa
3.
J Chromatogr A ; 1721: 464812, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38569297

RESUMO

In this work, a novel and efficient approach for sodium hypochlorite analysis is proposed via phase-conversion headspace technique, which is based on the gas chromatography (GC) detection of generated carbon dioxide (CO2) from the redox reaction of sodium hypochlorite with sodium oxalate. The data obtained by the proposed method suggest the high detecting precision and accuracy. In addition, the method has low detection limits (limit of quantification (LOQ) = 0.24 µg/mL), and the recoveries of added standard ranged from 98.33 to 101.27 %. The proposed phase-conversion headspace technique is efficient and automated, thereby offering an efficient strategy for highly efficient analysis of sodium hypochlorite and related products.


Assuntos
Desinfetantes , Hipoclorito de Sódio , Desinfetantes/análise , Ácido Hipocloroso , Cromatografia Gasosa/métodos , Dióxido de Carbono/análise
4.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611821

RESUMO

This study aimed to investigate the volatile flavor compounds and tastes of six kinds of sauced pork from the southwest and eastern coastal areas of China using gas chromatography-ion mobility spectroscopy (GC-IMS) combined with an electronic nose (E-nose) and electronic tongue (E-tongue). The results showed that the combined use of the E-nose and E-tongue could effectively identify different kinds of sauced pork. A total of 52 volatile flavor compounds were identified, with aldehydes being the main flavor compounds in sauced pork. The relative odor activity value (ROAV) showed that seven key volatile compounds, including 2-methylbutanal, 2-ethyl-3, 5-dimethylpyrazine, 3-octanone, ethyl 3-methylbutanoate, dimethyl disulfide, 2,3-butanedione, and heptane, contributed the most to the flavor of sauced pork (ROAV ≥1). Multivariate data analysis showed that 13 volatile compounds with the variable importance in projection (VIP) values > 1 could be used as flavor markers to distinguish six kinds of sauced pork. Pearson correlation analysis revealed a significant link between the E-nose sensor and alcohols, aldehydes, terpenes, esters, and hetero-cycle compounds. The results of the current study provide insights into the volatile flavor compounds and tastes of sauced pork. Additionally, intelligent sensory technologies can be a promising tool for discriminating different types of sauced pork.


Assuntos
Carne de Porco , Carne Vermelha , Suínos , Animais , Nariz Eletrônico , China , Análise Espectral , Aldeídos , Cromatografia Gasosa
5.
Mikrochim Acta ; 191(4): 226, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558261

RESUMO

The focus of this paper is laid on synthesizing layered compounds of CuMoO4 and Ti3C2Tx using a simple wet chemical etching method and sonochemical method to enable rapid detection of rutin using an electrochemical sensor. Following structural examinations using XRD, surface morphology analysis using SEM, and chemical composition state analysis using XPS, the obtained CuMoO4/Ti3C2Tx nanocomposite electrocatalyst was confirmed and characterized. By employing cyclic voltammetry and differential pulse voltammetry, the electrochemical properties of rutin on a CuMoO4/Ti3C2Tx modified electrode were examined, including its stability and response to variations in pH, loading, sweep rate, and interference. The CuMoO4/Ti3C2Tx modified electrode demonstrates rapid rutin sensing under optimal conditions and offers a linear range of 1 µΜ to 15 µΜ, thereby improving the minimal detection limit (LOD) to 42.9 nM. According to electrochemical analysis, the CuMoO4/Ti3C2Tx electrode also demonstrated cyclic stability and long-lasting anti-interference capabilities. The CuMoO4/Ti3C2Tx nanocomposite demonstrated acceptable recoveries when used to sense RT in apple and grape samples. In comparison to other interfering sample analytes encountered in the current study, the developed sensor demonstrated high selectivity and anti-interference performance. As a result, our research to design of high-performance electrochemical sensors in the biomedical and therapeutic fields.


Assuntos
Antioxidantes , Nanocompostos , Titânio , Cromatografia Gasosa , Rutina
6.
Se Pu ; 42(4): 387-392, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566428

RESUMO

The residual amount of halogenated solvents in olive oil is an important indicator of its quality. The National Olive Oil Quality Standard GB/T 23347-2021 states that the residual amount of individual halogenated solvents in olive oil should be ≤0.1 mg/kg and that the total residual amount of halogenated solvents should be ≤0.2 mg/kg. COI/T.20/Doc. No. 8-1990, which was published by the International Olive Council, describes the standard method used for the determination of halogenated solvents in olive oil. Unfortunately, this method is cumbersome, has poor repeatability and low automation, and is unsuitable for the detection and analysis of residual halogenated solvents in large quantities of olive oil. At present, no national standard method for determining residual halogenated solvents in olive oil is available in China. Thus, developing simple, efficient, accurate, and stable methods for the determination of residual halogenated solvents in olive oil is imperative. In this paper, a method based on automatic headspace gas chromatography was established for the determination of residual halogenated solvents, namely, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, dibromochloromethane, tetrachloroethylene, and bromoform, in olive oil. The samples were processed as follows. After mixing, 2.00 g (accurate to 0.01 g) of the olive oil sample was added into a 20 mL headspace injection bottle and immediately sealed for headspace gas chromatography analysis. Blank virgin olive oil was used to prepare a standard working solution and the external standard method for quantification. The solvents used in the preparation of halogenated solvent standard intermediates were investigated and methanol was selected as a replacement for N,N-dimethylacetamide to prepare a halogenated solvent standard intermediate owing to its safety. The effects of different injection times (1, 2, 3, 4, 5, 6 s), equilibration temperatures (60, 70, 80, 90, 100, 110, 120 ℃), and equilibration times (4, 5, 8, 10, 20, 30, 40 min) of the headspace sampler on the detection of the residual amounts of the six halogenated solvents were investigated. The optimal injection time and equilibration temperature were 3 s and 90 ℃, respectively. The method demonstrated good analytical performance for the six halogenated solvents when the equilibration time was 30 min. A methodological study was conducted on the optimized method, and the results showed that the six halogenated solvents exhibited good linear relationships in the range of 0.002-0.200 mg/kg, with correlation coefficients of ≥0.9991. The limits of detection (LODs) and quantification (LOQs) of 1,1,1-trichloroethane and bromoform were 0.0006 and 0.002 mg/kg, respectively. The LODs and LOQs of chloroform, carbon tetrachloride, dibromochloromethane, and tetrachloroethylene were 0.0003 and 0.001 mg/kg, respectively. The average recoveries under different spiked levels were 85.53%-115.93%, and the relative standard deviations (n=6) were 1.11%-8.48%. The established method was used to analyze 13 olive oil samples available in the market. Although no halogenated solvents were detected in these samples, a limited number of samples does not represent all olive oils. Hence, monitoring residual halogenated solvents in olive oil remains necessary for its safe consumption. The LOQs of the method for the six halogenated solvents were significantly lower than that of the COI/T.20/Doc. No. 8-1990 standard method (0.02 mg/kg). In addition, the developed method can be conducted under short operation times with high precision and degree of automation as well as good accuracy. Thus, the proposed method is suitable for the determination and analysis of the residues of the six halogenated solvents in large batches of olive oil samples.


Assuntos
Tetracloroetileno , Tricloroetanos , Azeite de Oliva , Solventes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Tetracloroetileno/análise , Clorofórmio/análise , Tetracloreto de Carbono/análise , Cromatografia Gasosa/métodos , Trialometanos
7.
Molecules ; 29(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474618

RESUMO

The analysis of enantiomers in food has significant implications for food safety and human health. Conventional analytical methods employed for enantiomer analysis, such as gas chromatography and high-performance liquid chromatography, are characterized by their labor-intensive nature and lengthy analysis times. This review focuses on the development of rapid and reliable biosensors for the analysis of enantiomers in food. Electrochemical and optical biosensors are highlighted, along with their fabrication methods and materials. The determination of enantiomers in food can authenticate products and ensure their safety. Amino acids and chiral pesticides are specifically discussed as important chiral substances found in food. The use of sensors replaces expensive reagents, offers real-time analysis capabilities, and provides a low-cost screening method for enantiomers. This review contributes to the advancement of sensor-based methods in the field of food analysis and promotes food authenticity and safety.


Assuntos
Técnicas Biossensoriais , Praguicidas , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Alimentos , Praguicidas/análise , Cromatografia Gasosa , Estereoisomerismo
8.
J Chromatogr A ; 1720: 464764, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38458137

RESUMO

The limit of detection (LOD) is a crucial measure in analytical methods, representing the smallest amount of a substance that can be distinguished from background noise. In the realm of gas chromatography (GC), however, determining LOD can be quite subjective, leading to significant variability among researchers. In this study, we validate the Hubaux-Vos method, an International Standards Organization(ISO)-approved approach for determining LOD in gas concentration measurements, using a GC equipped with a discharge ionization detector (DID) and a dynamic dilution system. We employ a gas mixture certified reference material (CRM) of CO, CH4, and CO2 at various concentrations to generate calibration curves for each gas. Subsequently, we estimate the LODs for each gas using the Hubaux-Vos method. Surprisingly, our findings indicate a notable difference between the LODs calculated using the Hubaux-Vos method and those confirmed through experiments. This highlights the importance of critically examining the theoretical foundations of LOD determination. We strongly recommend researchers to scrutinize the principles guiding LOD determination. The method proposed in this study offers an effective way to rigorously validate theoretical approaches for estimating LODs in gas concentration measurements using GC.


Assuntos
Limite de Detecção , Cromatografia Gasosa/métodos , Calibragem , Padrões de Referência , Técnicas de Diluição do Indicador
9.
J Chromatogr A ; 1720: 464798, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38502990

RESUMO

We present a new chromatogram decomposition method for Gas Chromatography (GC) which represents a chromatogram as a sum of template functions inspired by the analytic solution of mass balance equation. The proposed method starts by approximating GC response of a single gas by these template functions. Consequently, it utilizes the temporal translation and dilation of this approximate response to approximate GC responses of other gases of interest. The results are demonstrated on lab data using calibration bottles containing mixtures of C1-C5. Correlation of the amplitudes of the decomposed responses and injected concentrations indicates linear calibration curves are sufficient to estimate C1-C5 concentrations. The performance of the method is demonstrated by a ratio test where a calibration bottle with C1 concentration 300 times larger than C2 and C3 concentrations is injected into GC.


Assuntos
Gases , Calibragem , Cromatografia Gasosa/métodos , Gases/análise
10.
J Agric Food Chem ; 72(13): 7511-7516, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517735

RESUMO

The determination of odor threshold values can be performed in various matrices, including air, and serves as a parameter to compare the potencies of odorous compounds. Typically, the odor thresholds in air are determined by gas chromatography-olfactory (GC-O) and referenced to an internal standard, most often (E)-dec-2-enal. Herein, a direct gas chromatography-flame ionization detector-olfactory analysis method for the determination of odor thresholds in air is reported. As model substrates for this novel approach, naturally occurring substances (R)-1-p-menthene-8-thiol as well as (3S,3aS,6R,7aS)-3,6-dimethyl-3a,4,5,6,7,7a-hexahydro-3H-1-benzofuran-2-one were used. The latter compound was synthesized from (-)-isopulegol and exhibited an extremely low odor recognition threshold of 1.9 × 10-6 ng L-1 air, the lowest value reported for a fungal aroma compound thus far.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas , Olfato , Cromatografia Gasosa , Ionização de Chama , Compostos Orgânicos Voláteis/química
11.
J Chromatogr A ; 1721: 464823, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38547679

RESUMO

This paper reports a method for determining the oil absorption value of inorganic powder based on tracer-assisted headspace gas chromatographic (HS-GC) technique. The method was carried out by adding 25 µL droplet of toluene-Dioctyl Phthalate solution onto the surface of 1.0 g inorganic powder, then sealing the headspace vial and shaking it to make the powder spherical. The amount of toluene that not been adsorbed by inorganic powder was quantified using HS-GC with the optimal equilibrium temperature and time conditions of 100 °C and 7 min, respectively. A new mathematical model shows that the oil absorption value can be determined from the signal of toluene. The results show that the employed method has good precision (the relative standard deviation < 3.6 %) and accuracy (R2 = 0.993). This method is simple and accurate, and can be an reliable tool for testing the oil absorption value of inorganic powder sample.


Assuntos
Tolueno , Pós , Cromatografia Gasosa/métodos , Temperatura , Tolueno/análise
12.
J Agric Food Chem ; 72(14): 8081-8091, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38535975

RESUMO

Culinary sage, Salvia officinalis L., is a popular spice plant commonly used throughout the world. In this study, 35 odorants were identified in dried sage via solvent-assisted flavor evaporation (SAFE) and aroma extract dilution analysis (AEDA), including 9 that were identified in sage for the first time. Fifteen odorants were quantitated by stable isotope dilution analysis (SIDA), and their odor activity values (OAVs) were determined. Odorants with high OAVs included (2E,6Z)-nona-2,6-dienal, 1,8-cineole, and ß-myrcene. A formulated aroma simulation model closely matched the aroma profile of an aqueous infusion of dried sage. Enantiomeric proportions of selected odorants were determined by chiral gas chromatography. Furthermore, 6 different sage cultivars were grown in the greenhouse, dried under the same conditions, and analyzed. Sensory analysis determined that all cultivars were dominated by an herbaceous sensory attribute and had varying intensities of eucalyptus, mint, clove, pine, green, earthy, floral, and citrus notes. Cultivars with varying intensities of herbaceous, eucalyptus, pine, and green sensory notes correlated with the OAVs of α-thujone/ß-thujone, 1,8-cineole, α-pinene, and (2E,6Z)-nona-2,6-dienal, respectively. This study identified the odorants driving the sensory profiles of different sage cultivars and serves as a foundation for future studies on the aroma chemistry of culinary sage.


Assuntos
Salvia officinalis , Compostos Orgânicos Voláteis , Odorantes/análise , Eucaliptol/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Gasosa , Compostos Orgânicos Voláteis/química , Aromatizantes/química , Olfatometria
13.
Methods Mol Biol ; 2789: 75-83, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38506993

RESUMO

Various organic solvents are widely used in the manufacturing, processing, and purification of drug substances, drug products, formulations, excipients, etc. These solvents must be removed to the lowest amount permitted, as they do not possess any therapeutic advantages and may cause undesirable toxicities. Therefore, a rapid and sensitive analytical method for the quantitation of residual solvents is needed. The following chapter presents a static headspace gas chromatographic (HSGC) method for determining the concentration of common residual solvents in various nanoformulations. An efficient and sensitive HSGC method has been developed using PerkinElmer's headspace autosampler/gas chromatographic system with a flame ionization detector (FID) and validated according to the International Conference for Harmonization (ICH) guideline Q3C. The method validation indicates that the method is specific, linear, accurate, precise, and sensitive for the analyzed solvents. The method is suitable for the analysis of 13 residual solvents (methanol, ethanol, acetone, diethyl ether, 2-propanol, acetonitrile, 1-propanol, ethyl acetate, tetrahydrofuran, dichloromethane, chloroform, 1-butanol, and pyridine) and utilizes an Elite 624 Crossbond 6% cyanopropylphenyl, 94% dimethylpolysiloxanes column with helium as a carrier gas.


Assuntos
Etanol , Metanol , Cromatografia Gasosa/métodos , Solventes/química , Ionização de Chama , Metanol/análise
14.
Artigo em Inglês | MEDLINE | ID: mdl-38460448

RESUMO

This work reports the characterization of the lipidic fraction of seven species of marine organisms gathered along the shoreline of the Po Delta Park of Emilia-Romagna Region (Italy) and of the north Adriatic Sea. Two species of oysters (Crassostrea gigas and Ostrea edulis), two species of clams (Chamelea gallina and Ruditapes philippinarum), one species of mussel (Mytilus galloprovincialis), one species of macroalgae (Ulva rigida), and one species of spiny dogfish (Squalus acanthias) were analyzed to characterize their fatty acids profile and related nutritional value. The lipid fraction was simultaneously extracted and transesterified into fatty acid methyl esters (FAMEs) by using a recently developed one-step microwave-assisted extraction/derivatization (MAED) method. The obtained FAMEs extract was analyzed by a rapid comprehensive multidimensional gas chromatography (GC × GC) method (30 min). The system was equipped with a reverse set of columns (polar × non-polar) connected through a reversed fill/flush flow modulator. The GC × GC system was coupled with a flame-ionization detector (FID) for both qualitative and quantitative purposes. The MAED- GC × GC-FID methodology was suitable in the context of samples containing high percentages of omega-3 PUFA. A total of 82 FAMEs were tentatively identified using standards, literature data, and the two-dimensional plot location. FAME profiles obtained with the proposed approach were comparable with reference methods (AOCS Ce 2b-11), showing no significant differences. Moreover, to determine the food nutritional value of the samples investigated, the most common nutritional indices (index of atherogenicity, index thrombogenicity, hypocholesterolemic/hypercholesterolemic ratio, health-promoting index, unsaturation index, and the fish lipid quality index) were calculated from FAME profiles. Among the samples investigated, Squalus acanthias presented the best nutritional score, while Ruditapes philippinarum had the worst score in 3 out of 6 indices.


Assuntos
Organismos Aquáticos , 60578 , Ácidos Graxos , Ulva , Animais , Ácidos Graxos/análise , Ionização de Chama/métodos , Micro-Ondas , Cromatografia Gasosa/métodos
15.
Artigo em Chinês | MEDLINE | ID: mdl-38538245

RESUMO

As a rapid, accurate and efficient analytical technique, gas chromatography is widely used in the detection of volatile organic compounds and inorganic small molecule toxins, and it is the main analytical method in the national testing standards for occupational health. The existing effective national standards of gas chromatography for the detection of some substances have low column efficiency, high toxicity of reagents, poor correlation of the standard curve and low desorption efficiency and other problems, some of which can be solved through method improvement. At the same time, with the use of new materials and new processes, new types of toxic substances are emerging, and there are still many occupational disease hazards of limited value without supporting detection methods, gas chromatography can be applied to the detection of some toxic substances to better complement the vacancy of China's occupational health detection methods. This paper analyzes the current situation of the application of gas chromatography in occupational health testing standards, discusses the improvement of some of these methods, and helps to promote the application and development of gas chromatography in occupational health testing.


Assuntos
Poluentes Ocupacionais do Ar , Saúde Ocupacional , Poluentes Ocupacionais do Ar/análise , Local de Trabalho , Cromatografia Gasosa/métodos , China
16.
Environ Sci Pollut Res Int ; 31(17): 25033-25045, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38466382

RESUMO

Polybrominated diphenyl ethers (PBDEs) are a group of compounds that, due to their applications, are considered mainly indoor contaminants. To obtain the first information about the presence of PBDEs in Serbia, dust samples (n = 50) were collected in settlements in the northern Serbian province of Vojvodina. The selected/target congeners (BDE-28, 47, 99, 100, 153, 154, and 183) were extracted from house dust by microwave-assisted extraction technique, and purified extracts were analyzed on a dual-column gas chromatograph with micro-electron capture detectors. A wide range of ΣPBDEs was detected (0.295 to 394 ng g-1 dust), which reflects large differences in contamination among the examined homes. For the majority of samples (72%), ΣPBDEs were lower than 5 ng g-1 indicating that people living in Vojvodina province are exposed to low concentrations of PBDEs present in their households. Based on principal component analysis (PCA), balcony areas and age of the house positively correlate with the PBDE congeners with higher detection frequencies (≥ 50%), namely, with BDE-99, BDE-153, and BDE-183. Statistically significant positive correlation (p < 0.01) was obtained for BDE-99 and the number of household's members. Estimated daily intakes (EDItot) were calculated for ingestion and dermal absorption of dust for two age groups-adults and toddlers. These are the first data on PBDE status in the area of the Western Balkan, and the health risk assessment indicates that PBDE levels obtained in household dust do not pose a risk for human health.


Assuntos
Poluição do Ar em Ambientes Fechados , Éteres Difenil Halogenados , Adulto , Humanos , Éteres Difenil Halogenados/análise , Sérvia , Poeira/análise , Poluição do Ar em Ambientes Fechados/análise , Cromatografia Gasosa , Medição de Risco , Exposição Ambiental/análise , Monitoramento Ambiental
17.
Forensic Sci Int ; 357: 111992, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518570

RESUMO

Substance misuse is a major problem among individuals involved in forensic-correctional mental health services. Urine drug screening detects substance use and deters the entry of contraband into forensic-correctional units, albeit with limitations. For example, a point-of-care urine sample may not be possible and patients can alter or substitute samples to avoid detection, highlighting the role of ancillary tools to detect contraband substances. This study describes the pattern and types of substances detected from environmental samples using a gas chromatographic analyzer (TeknoScan TSI3000) in forensic-correctional populations to model the benefits of similar tools in similar settings. Samples collected over 18 months (January 2020 to June 2021) by trained staff members using the machine were reviewed. During this period, 217 environmental samples were recorded, and 66 (30%) samples were positive for contraband substances, including tetrahydrocannabinol (25%), methamphetamines (19%), and cocaine (16%). Other substances detected include methylene-dioxymethamphetamine, heroin, morphine, lysergic acid diethylamide, tramadol, and methyl-benzoate. Fewer positive samples were detected, especially during the time corresponding with the COVID-19 restriction on the forensic units. TeknoScan was beneficial as an ancillary tool to detect and deter contraband substances. It also provided evidence for risk management. Adequate training is needed for the successful implementation of the tool.


Assuntos
Serviços de Saúde Mental , Transtornos Relacionados ao Uso de Substâncias , Humanos , Heroína , Morfina , Transtornos Relacionados ao Uso de Substâncias/diagnóstico , Cromatografia Gasosa
18.
J Pharm Biomed Anal ; 242: 116005, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364343

RESUMO

The goal of this research is the development of multiple monolithic fiber-solid phase microextraction (MMF-SPME) using a new integrated fiber for the determination of amphetamine derivatives and modafinil from unauthorized medicinal supplements. For this purpose, a monolithic fiber of metal organic framework MIL-Al (53)-deep eutectic solvent (DES)/molecularly imprinted polymers (MOF-DES/MIP) was synthesized. To find optimum microextraction conditions gas chromatography-mass spectrometer (GC-MS) was used and the influences of effective variables were investigated using one factor at a time method. After that, the significant variables were optimized using a Box-Behnken design (BBD) combined with a desirability function (DF). Under optimized conditions (desorption solvent=1500 µL of 1-octanol, pH=3.5, extraction time=35 min, [NaCl]=0% w/v and stirring rate=600 rpm), calibration graphs of analytes were linear in a concentration range of 0.1-400 µg L-1 with correlation coefficients > 0.9966. Limits of detection and quantification were in the ranges of 0.023-0.033 µg L-1 and 0.088-0.113 µg L-1, respectively. This procedure was successfully employed in determining target analytes in spiked and unspiked unauthorized medicinal supplement samples with recoveries ranging from 95.14 to 104.63%.


Assuntos
Estruturas Metalorgânicas , Polímeros Molecularmente Impressos , Polímeros , Modafinila , Microextração em Fase Sólida/métodos , Solventes Eutéticos Profundos , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Gasosa , Anfetaminas
19.
Phytochemistry ; 220: 114004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331135

RESUMO

Plant metabolite profiling reveals the diversity of secondary or specialized metabolites in the plant kingdom with its hundreds of thousands of species. Specialized plant metabolites constitute a vast class of chemicals posing significant challenges in analytical chemistry. In order to be of maximum scientific relevance, reports dealing with these compounds and their source species must be transparent, make use of standards and reference materials, and be based on correctly and traceably identified plant material. Essential aspects in qualitative plant metabolite profiling include: (i) critical review of previous literature and a reasoned sampling strategy; (ii) transparent plant sampling with wild material documented by vouchers in public herbaria and, optimally, seed banks; (iii) if possible, inclusion of generally available reference plant material; (iv) transparent, documented state-of-the art chemical analysis, ideally including chemical reference standards; (v) testing for artefacts during preparative extraction and isolation, using gentle analytical methods; (vi) careful chemical data interpretation, avoiding over- and misinterpretation and taking into account phytochemical complexity when assigning identification confidence levels, and (vii) taking all previous scientific knowledge into account in reporting the scientific data. From the current stage of the phytochemical literature, selected comments and suggestions are given. In the past, proposed revisions of botanical taxonomy were sometimes based on metabolite profiles, but this approach ("chemosystematics" or "chemotaxonomy") is outdated due to the advent of DNA sequence-based phylogenies. In contrast, systematic comparisons of plant metabolite profiles in a known phylogenetic framework remain relevant. This approach, known as chemophenetics, allows characterizing species and clades based on their array of specialized metabolites, aids in deducing the evolution of biosynthetic pathways and coevolution, and can serve in identifying new sources of rare and economically interesting natural products.


Assuntos
Produtos Biológicos , Plantas , Filogenia , Cromatografia Gasosa , Compostos Fitoquímicos
20.
Planta Med ; 90(4): 316-332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387478

RESUMO

Concerns about health hazards associated with the consumption of trans-delta-8-tetrahydrocannabinol products were highlighted in public health advisories from the U. S. Food and Drug Administration and U. S. Centers for Disease Control and Prevention. Simple and rapid quantitative methods to determine trans-delta-8-tetrahydrocannabinol impurities are vital to analyze such products. In this study, a gas chromatography-flame ionization detection method was developed and validated for the determination of delta-8-tetrahydrocannabinol and some of its impurities (recently published) found in synthesized trans-delta-8-tetrahydrocannabinol raw material and included olivetol, cannabicitran, Δ 8-cis-iso-tetrahydrocannabinol, Δ 4-iso-tetrahydrocannabinol, iso-tetrahydrocannabifuran, cannabidiol, Δ 4,8-iso-tetrahydrocannabinol, Δ 8-iso-tetrahydrocannabinol, 4,8-epoxy-iso-tetrahydrocannabinol, trans-Δ 9-tetrahydrocannabinol, 8-hydroxy-iso-THC, 9α-hydroxyhexahydrocannabinol, and 9ß-hydroxyhexahydrocannabinol. Validation of the method was assessed according to the International Council for Harmonization guidelines and confirmed linearity with R2 ≥ 0.99 for all the target analytes. The limit of detection and limit of quantitation were 1.5 and 5 µg/mL, respectively, except for olivetol, which had a limit of detection of 3 µg/mL and a limit of quantitation of 10 µg/mL. Method precision was calculated as % relative standard deviation and the values were less than 8.4 and 9.9% for the intraday precision and inter-day precision, respectively. The accuracy ranged from 85 to 118%. The method was then applied to the analysis of 21 commercially marketed vaping products claiming to contain delta-8-tetrahydrocannabinol. The products analyzed by this method have various levels of these impurities, with all products far exceeding the 0.3% of trans-Δ 9-tetrahydrocannabinol limit for hemp under the Agriculture Improvement Act of 2018. The developed gas chromatography-flame ionization detection method can be an important tool for monitoring delta-8-tetrahydrocannabinol impurities in commercial products.


Assuntos
Dronabinol , Dronabinol/análogos & derivados , Resorcinóis , Vaping , Dronabinol/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Gasosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...